Physics 402 Fall 2022 Prof. Anlage Discussion Worksheet for 31 August, 2022

1. The electron in a hydrogen atom occupies the combined spin and position state

$$\Psi = R_{21}(r) \left(\sqrt{\frac{1}{3}} Y_1^0(\theta, \phi) \chi_+ + \sqrt{\frac{2}{3}} Y_1^1(\theta, \phi) \chi_- \right)$$

- a) If you measured the orbital angular momentum squared (L^2) , what values might you get, and what is the probability of each?
- b) Same for the z component of orbital angular momentum (L_z)
- c) Same for the spin angular momentum squared (S^2)
- d) Same for the z component of spin angular momentum (S_z)
- e) What is the energy of the Hydrogen atom in this state?

28.	Eigenfunctions for a rigid dumbbell rotating
	about its center have a ϕ dependence of the
	form $\psi(\phi) = Ae^{im\phi}$, where m is a quantum
	number and A is a constant. Which of the
	following values of A will properly normalize
	the eigenfunction?

- (A) $\sqrt{2\pi}$
- (B) 2π
- (C) $(2\pi)^2$
- (D) $\frac{1}{\sqrt{2\pi}}$
- (E) $\frac{1}{2\pi}$

Physics GRE Quantum Mechanics!

28. A system is known to be in the normalized state described by the wave function

$$\psi(\theta,\varphi) = \frac{1}{\sqrt{30}} \left(5 Y_4^3 + Y_6^3 - 2 Y_6^0\right),$$

where the $Y Q^m(\theta, \phi)$ are the spherical harmonics.

azimuthal orbital quantum number m = 3 is

The probability of finding the system in a state with

- (A) 0
- (B) $\frac{1}{15}$
- (C) $\frac{1}{6}$
- (D) $\frac{1}{3}$
- (E) $\frac{13}{15}$

- 49. The Hamiltonian operator in the Schrödinger equation can be formed from the classical Hamiltonian by substituting
 - (A) wavelength and frequency for momentum and energy
 - (B) a differential operator for momentum
 (C) transition probability for potential energy
 - (D) sums over discrete eigenvalues for integrals over continuous variables
 - (E) Gaussian distributions of observables for exact values
 - 50. The state of a quantum mechanical system is described by a wave function ψ. Consider two physical observables that have discrete eigenvalues: observable A with eigenvalues {α}, and observable B with eigenvalues {β}. Under what circumstances can all wave functions be expanded in a set of basis states, each of which is a simultaneous eigenfunction of both A and B?
 - (A) Only if the values {α} and {β} are nondegenerate
 - (B) Only if A and B commute
 - (C) Only if A commutes with the Hamiltonian of the system
 - (D) Only if B commutes with the Hamiltonian of the system
 - (E) Under all circumstances
 - 77. Consider a heavy nucleus with spin $\frac{1}{2}$. The magnitude of the ratio of the intrinsic magnetic moment of this nucleus to that of an electron is
 - (A) zero, because the nucleus has no intrinsic magnetic moment
 - (B) greater than 1, because the nucleus contains many protons
 - (C) greater than 1, because the nucleus is so much larger in diameter than the electron
 - (D) less than 1, because of the strong interactions among the nucleons in a nucleus
 - (E) less than 1, because the nucleus has a mass much larger than that of the electron

96. A particle of mass M is in an infinitely deep square well potential V where

$$V = 0$$
 for $-a \le x \le a$, and $V = \infty$ for $x < -a$, $a < x$.

A very small perturbing potential V' is superimposed on V such that

$$V' = \epsilon \left(\frac{a}{2} - |x|\right)$$
 for $\frac{-a}{2} \le x \le \frac{a}{2}$, and $V' = 0$ for $x < \frac{-a}{2}$, $\frac{a}{2} < x$.

If ψ_0 , ψ_1 , ψ_2 , ψ_3 , ... are the energy eigenfunctions for a particle in the infinitely deep square well potential, with ψ_0 being the ground state, which of the following statements is correct about the eigenfunction ψ_0' of a particle in the perturbed potential V + V'?

- (A) $\psi_0' = a_{00}\psi_0, a_{00} \neq 0$
- (B) $\psi_0' = \sum_{n=0}^{\infty} a_{0n} \psi_n$ with $a_{0n} = 0$ for all odd

values of n

(C)
$$\psi_0' = \sum_{n=0}^{\infty} a_{0n} \, \psi_n$$
 with $a_{0n} = 0$ for all even values of n

(D) $\psi_0' = \sum_{n=0}^{\infty} a_{0n} \ \psi_n \text{ with } a_{0n} \neq 0 \text{ for all }$ values of n

(E) None of the above